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• Snowmelt from mountain forests is 
critical for water supply in Arizona 
and across the western US

• Seasonal streamflow predictions 
often use observations that are not 
representative of surrounding 
areas

• Long-term gridded snow data 
needed to infer snow condition 
across landscape to improve 
seasonal streamflow predictions

Introduction
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Top: SNOTEL and COOP Stations where snow data is used in the 
creation of the UA SWE dataset; Bottom: average maximum SWE 
based on this data

UA/SWANN Data

• Based on the University of Arizona (UA) 
daily 4 km Snow Water Equivalent (SWE) 
and snow depth dataset 

• Daily data starting in 1981

• Includes interpolated SWE estimates 
from ground stations (Broxton et al., 
2016); physically based snow density 
model (Dawson et al., 2017)

• Data available from NSIDC: 
https://doi.org/10.5067/0GGPB220EX6A
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UA/SWANN Data

• UA data downscaled to < 1 km 
using machine learning of SWE 
response to various 
physiographic indicators

• Trained and evaluated with 
snow survey data from Arizona 
(Broxton et al., 2019) and 
elsewhere in the western US 
(Harpold et al., 2014)

• Generated in near-real time

• UA/SWANN model: used to provide snow monitoring for SRP
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Dataset Evaluation

• UA/SWANN data are compared to 
lidar coverages from the western 
US

• At most sites, captures the spatial 
pattern of snow depth at most 
sites

• Better simulation of snow depth 
than SNODAS at some sites; goes 
back much further in time
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30 km
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Dataset Evaluation



• SnowView datasets 
improve seasonal 
streamflow forecasts 
(e.g. to help SRP plan 
reservoir operations)

• When based on these 
gridded snow data (red 
line), they are better 
than the current state of 
the art of using station 
snow data (blue line) 

Credit: Bo Svoma, SRP

Observed Discharge Prediction with only SNOTELs Prediction with UA/SWANN SWE Data

RMSE (UA/SWANN): 112,983 af
NSE (UA/SWANN): 0.78

RMSE (SNOTEL): 181,629 af
NSE (SNOTEL): 0.44

Streamflow Forecasting
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Streamflow Forecasting

• Forecasts based on UA/SWANN SWE 
data, climatic indices, long range 
seasonal forecasts, and other land 
antecedent conditions

• Machine learning to make predictions 
of remaining streamflow for every 
calendar day. 

• Models trained with data from 1982, 
run for every year since then
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Streamflow Forecasting

Accumulated Streamflow
Seasonal Forecast
Seasonal Forecast Range



Detailed data
for SNOTEL,  
USGS gauges, 
and river basins

Zoomable web 
map

Timeseries for 
comparing data 
for different years

Various snow
related data
layers

Find 
comparable 
snow seasons

Download data

Choose single 
map or side-
by-side maps
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SnowView Decision Support Tool

• Helps Salt River Project (SRP) to determine how current year’s water supply 
might compare with previous years



SWE Data: UA / SWANN, SNODAS data

Snowcover Data: MODIS imagery, IMS data

Precipitation Data: PRISM data

Point Data: SNOTEL SWE and Precipitation data, USGS Streamflow data

SNODAS SWEUA/SWANN SWE MODIS Imagery IMS Snowcover

PRISM Precipitation Percent of Normal SWE Percent of Normal Precipitation
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SnowView Decision Support Tool



• Expanded to include similar information and functionality for additional 
watersheds across the US

• Map visualization across the US as well as timeseries data for USGS 
HUC2,4,6,8 watersheds, SNOTEL stations, and USGS stream gauges
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SnowView Decision Support Tool

https://climate.arizona.edu/snowview/
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Summary
• Gridded SWE data offer advantages over point SWE 

observations for water supply modelling because they can 
estimate SWE conditions across the landscape

• The UA/SWANN SWE data provide near real-time SWE 
estimates that can be used for water supply modelling

• They improve SRP seasonal streamflow forecasts over using 
only SNOTEL data

• Currently, we are using UA/SWANN SWE data to develop 
daily updating seasonal streamflow forecasts for SRP

• 4 km SWE dataset (1981-2017) can be downloaded from 
NSIDC: https://doi.org/10.5067/0GGPB220EX6A

• Higher Resolution data can be visualized using our 
SnowView interface: https://climate.arizona.edu/snowview
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Thank You!
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